Superuse Studios is an international architecture collective for circular and sustainable design.

A design is not considered as the beginning of a linear, but circular process: A phase in a continuous cycle of creation and recreation, use and reuse.

We apply several strategies to make sustainable architecture with reclaimed materials.

Superuse Studios is an international architecture collective for circular and sustainable design.
A design is not considered as the beginning of a linear, but circular process: A phase in a continuous cycle of creation and recreation, use and reuse.
We apply several strategies to make sustainable architecture with reclaimed materials.

Strategy_1

Harvesting Materials

Superuse calls searching, finding and dismantling reusable building materials ‘harvesting’. For this purpose, Superuse founded the platform oogstkaart.nl in 2012. This marketplace for reusable building materials is used by Superuse itself and by external architects, design professionals, builders and project developers. In 2019, the platform was sold to urban mining company New Horizon.
When materials can be harvested for a structure, Superuse prefers to search as locally as possible. If there is demolition or renovation of an existing building at the location of the design brief, this is logically the first source to harvest materials. After that, sources are sought in the vicinity of the project, whereby the scale can be increased if necessary.
There are various sources of residual materials, each with its own characteristics and dynamics:
_ End of life cycle (waste)
_ Construction and demolition (waste)
_ Dead stock (new)
_ Production failures (new)
_ Fast-life (short use)
When completing a design assignment, Superuse often produces a graphic harvest map for the client with an overview of the residual materials used and their locations. In this exhibition, a project map of each design is also shown.
For the project Buitenplaats Brienenoord both locally harvested materials and externally harvested materials were used. 90% of the materials were released during the demolition of the scouting building that was present on the site, for example the foundation, trusses, window frames and woodwork. The remaining materials were harvested at different distances from the project, for example ceiling tiles at 2.5 km and Trespa sheets at 140 km.

Building Reuse

Strategy_2

Building Reuse

Strategy_2

Demolishing a building costs a lot of energy, so Superuse’s strategy is to reuse an entire building wherever possible. Here, we do not only mean renovating, but we often work on a complete change of function. Of course with the preservation of as many valuable parts of the old building as possible.

The supporting structure is always the starting point. Within the preconditions of load-bearing capacity and dimensions, we look for the optimal layout for the required programme. Where necessary, we make breakthroughs for the benefit of routing or add floors if the height allows. Often, a new entrance provides better access to all functions and creates a place that can give an identity to the new use.

We keep all installations for heating and electricity separate from other built-in parts according to the layer model of Stewart Brand, so that maintenance is easy and future changes are possible. By thinking in terms of layers with different lifespans, we literally create a layered building. The readability of the functions is enhanced, because by making the technology and the supporting structure visible, the flows (power lines, electricity, water) become more legible. If necessary, zoning of climate zones can contribute to strategic insulation instead of the entire building.

In Art Zaanstad it is easy to see how the column structure has determined the layout of the space and the size of the moveable exhibition walls. The colour scheme of the walls and structure has been maintained and expanded with a quiet palette of mainly black and white tones. The new entrance provides a clear public entrance.

Foto van Art Zaanstad door Superuse, fotograaf Jos de Krieger
Demolishing a building costs a lot of energy, so Superuse’s strategy is to reuse an entire building wherever possible. Here, we do not only mean renovating, but we often work on a complete change of function. Of course with the preservation of as many valuable parts of the old building as possible.

The supporting structure is always the starting point. Within the preconditions of load-bearing capacity and dimensions, we look for the optimal layout for the required programme. Where necessary, we make breakthroughs for the benefit of routing or add floors if the height allows. Often, a new entrance provides better access to all functions and creates a place that can give an identity to the new use.

We keep all installations for heating and electricity separate from other built-in parts according to the layer model of Stewart Brand, so that maintenance is easy and future changes are possible. By thinking in terms of layers with different lifespans, we literally create a layered building. The readability of the functions is enhanced, because by making the technology and the supporting structure visible, the flows (power lines, electricity, water) become more legible. If necessary, zoning of climate zones can contribute to strategic insulation instead of the entire building.

In Art Zaanstad it is easy to see how the column structure has determined the layout of the space and the size of the moveable exhibition walls. The colour scheme of the walls and structure has been maintained and expanded with a quiet palette of mainly black and white tones. The new entrance provides a clear public entrance.

Foto van Art Zaanstad door Superuse, fotograaf Jos de Krieger

Strategy_3

Circular Materials

Superuse uses a decision tree to make the hierarchy of material choices clear.

_0 Prevent
Preventing the use of a building component or material saves the most CO2 emissions and reduces the environmental impact.

_1 Reusable materials
With reuse, an existing building component is reused, whether or not for a different purpose, treated or untreated.

_2 Renewable / biobased materials
Materials that are derived from biomass. They can be physically, chemically or biologically treated. Ecological building materials are renewable without chemical or abiotic substances.

_3 Recycled materials
Materials that consist mainly of recycled raw materials.

_4 Conventional materials
When none of the above options are available, conventional building materials are chosen. These have no savings in terms of CO2emissions or environmental impact. However, a conventional material can be reused or recycled.

Superuse prefers to work with locally harvested reusable building materials. This is where the biggest environmental gains can be made. Reuse prevents the production of new building material, no pollution is released by recycling or burning waste. Moreover, transport movements and related emissions are minimal.

Sometimes other materials can have a lower impact. For example, when reusable materials have to come from far away, or when a lot of processing or maintenance is required. This also happens when the reusable materials are outdated and do not contribute to the energy performance of a building (e.g. single glazing).

Circular Building Process

Strategy_4

Strategy_4

Circular Building Process

Circular building requires an integral approach from the ambition phase to realisation. Central to this is the design, in which Superuse as architect works together with partners and the client as a design team on a Dynamic Final Design. In addition to the usual drawings, this consists of a harvest map that shows the origin of the materials and a dynamic bill of materials that dissects the design into all architectural components.

With the dynamic bill of materials, the ambitions formulated by the client and architect and the preconditions from the schedule of requirements can be observed in all phases of the process. In addition to costs, the ecological footprint in CO2eq, for example, is a possible steering tool, or the percentage of bio-based material that will be used.

The project’s harvest map is fed by all sources known to us and to select materials we use the decision tree that helps to limit CO2emissions. The preference is to work with re-used materials, where available and applicable.

Ultimately, we hand over the design with the bill of materials to the contractor as a shopping list. The purchasing list and the design are based on this in order to achieve a circular realisation. If possible, this can also be done in a construction team, in which the client, architect and contractor work closely together.

After delivery, all applied materials are bundled in a material passport. This is a digital representation of dynamic elements, which ultimately can be traced back to raw material level. During its lifetime, the passport helps with decision-making on the building’s maintenance. In 50+ years, it can serve as a source for the supply side of reusable materials.

Interior of one of the offices of Q-dance.
Circular building requires an integral approach from the ambition phase to realisation. Central to this is the design, in which Superuse as architect works together with partners and the client as a design team on a Dynamic Final Design. In addition to the usual drawings, this consists of a harvest map that shows the origin of the materials and a dynamic bill of materials that dissects the design into all architectural components.

With the dynamic bill of materials, the ambitions formulated by the client and architect and the preconditions from the schedule of requirements can be observed in all phases of the process. In addition to costs, the ecological footprint in CO2eq, for example, is a possible steering tool, or the percentage of bio-based material that will be used.

The project’s harvest map is fed by all sources known to us and to select materials we use the decision tree that helps to limit CO2emissions. The preference is to work with re-used materials, where available and applicable.

Ultimately, we hand over the design with the bill of materials to the contractor as a shopping list. The purchasing list and the design are based on this in order to achieve a circular realisation. If possible, this can also be done in a construction team, in which the client, architect and contractor work closely together.

After delivery, all applied materials are bundled in a material passport. This is a digital representation of dynamic elements, which ultimately can be traced back to raw material level. During its lifetime, the passport helps with decision-making on the building’s maintenance. In 50+ years, it can serve as a source for the supply side of reusable materials.

Interior of one of the offices of Q-dance.

Strategy_5

Demountable Construction

Interieur van KEVN in Eindhoven. Fotograaf: Frank Hanswijk
Façade of KEVN in Eindhoven. Photo by Frank Hanswijk
Demountable construction occupies an important place within the circular construction methodology. This is also referred to as detachability. Materials can then be reused not just once, but continuously. Therefore, it is important that buildings and building elements are designed and built in a way that allows them to be detached. Superuse therefore designs as much as possible ‘dry’. In other words, with dismountable connections that ensure that materials and building elements can be released without damage during maintenance or at the end of their lifespan.

Superuse applied this strategy in various ways in the design of the KEVN pavilion.

_ The pavilion is not built on a pile foundation. Instead, there are three layers of stelcon plates in the floor to create the necessary weight. In between are steel profiles, to which the trusses are bolted. The insulation layer lies between these, as does a layer of sand.
_ The main load-bearing structure with trusses and beams is fully bolted.
_ A non-load-bearing curtain wall system of glass and steel was chosen for the façade. The glass can be clamped with click strips. The use of rubbers and profiles means that no gluing or sealing is required.
_The roof package is laid ‘loosely’, except for the water-retaining layer. This is glued on, but can be removed for separate recycling.
_ All installations for heating and electricity were kept separate from other built-in parts.

As a result, the KEVN pavilion is designed as a kit that can be easily disassembled and reassembled elsewhere. The materials retain their value and it is better for the environment.

Material Driven Design

Strategy_6

Material Driven Design

Strategy_6

In material-driven design, the architect is inspired and guided by available reusable materials. We assume high-quality reuse. This means that the material can be used again in its original function or in a higher one without much processing.

In the concept or sketch design phase, the reusable material with all its characteristic properties (such as size, shape, colour, weather resistance, durability) serves as inspiration. Sometimes the actual material is already known, other times Superuse works with materials that experience has shown will become available.
In the latter case, the search for available reusable materials starts after a preliminary design. A final design with details and measurements follows after certainty about the purchase of rest lots. It must be possible to modify the design right up to the final phase. That is why Superuse speaks of a Dynamic Final Design. This is only possible with good cooperation between architect, contractor and client.
When the design is fixed and the search is on for specific suitable used materials, the chance of success is smaller.

The Blade Made projects by Superuse are a good example of material driven design. The characteristics of wind turbine blades are optimally utilised by the newly chosen applications. The shape of the blades lends itself for an ergonomic seating object as applied in REwind and Wikado. The shape of the blades also allows, after a few simple interventions, to create very diverse and imaginative play elements for children to climb on or in. The material of the blades is robust, weatherproof and vandal-proof, ideal for a playground or outdoor furniture.

Blade turned into climbing structure.
Blade Made playground Wikado in Rotterdam. Photo by Denis Guzzo.
In material-driven design, the architect is inspired and guided by available reusable materials. We assume high-quality reuse. This means that the material can be used again in its original function or in a higher one without much processing.

In the concept or sketch design phase, the reusable material with all its characteristic properties (such as size, shape, colour, weather resistance, durability) serves as inspiration. Sometimes the actual material is already known, other times Superuse works with materials that experience has shown will become available.
In the latter case, the search for available reusable materials starts after a preliminary design. A final design with details and measurements follows after certainty about the purchase of rest lots. It must be possible to modify the design right up to the final phase. That is why Superuse speaks of a Dynamic Final Design. This is only possible with good cooperation between architect, contractor and client.
When the design is fixed and the search is on for specific suitable used materials, the chance of success is smaller.

The Blade Made projects by Superuse are a good example of material driven design. The characteristics of wind turbine blades are optimally utilised by the newly chosen applications. The shape of the blades lends itself for an ergonomic seating object as applied in REwind and Wikado. The shape of the blades also allows, after a few simple interventions, to create very diverse and imaginative play elements for children to climb on or in. The material of the blades is robust, weatherproof and vandal-proof, ideal for a playground or outdoor furniture.

Blade turned into climbing structure.
Blade Made playground Wikado in Rotterdam. Photo by Denis Guzzo.

Strategy_7

Permits and Warranties

At present, there are few suppliers who offer guarantees on reused materials. Therefore, other constructions have to be devised in order to retain the trust of clients. Depending on the scale of the project, a certain strategy can be adopted.

_ Shared responsibility;
In a building team of architect, contractor and client, the materials to be used can be agreed at the construction meeting. If together they have enough expertise to approve the materials, they share the responsibility. For some materials, common sense is enough to guarantee safe and sustainable application.

_ Buy off through external assessment;
In the event that common sense or joint expertise is insufficient to approve a material, it can be subjected to a test by a certifying body. This can be used, for example, to obtain a fire safety certificate or a declaration of equivalence, whereby the application is assessed by an external party.

_ Stockpiling;
For materials that are sensitive to wear and tear or the possibility of damage, it can be useful to keep a small stock of spare parts in the building. Examples of this are façade finishes or special glass sizes.

At Villa Welpeloo, all of the above strategies have been used. Recycled steel was used in the construction. The structural engineer’s calculations showed that the worst quality steel from the year the textile machine was built was strong enough to support the building. Extra slats were purchased for the façade, should maintenance be required due to damage.